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F L O W  O F  A H E A V Y  V I S C O P L A S T I C  F L U I D  
IN A GAP BETWEEN ROTATING R O L L E R S  

V. M. Shapovalov and I. V. Stepanov UDC 535.135:542.47 

The problem of  the flow of a Shvedov-Bingham fluid in a vertical gap of  oppositely rotating rollers 
with allowance for  the intrinsic weight of the fluid is formulated and solved. 

The problem under consideration is associated with the process of  drying of  a highly filled suspension 
on a two-roller dryer. With a similar mechanism of flow the process of depositing the material being dried on 
rollers differs significantly from that of calendering of polymer materials, which is very close in scheme. First 
of  all the viscosity o f  the medium is 2 -4  orders of magnitude lower than that of  calendered polymers, for 
example, of rubber mixures. Therefore, whereas power and mechanical calculations are determinable for calen- 
ders, for the process of  depositing paste-type compositions the efforts appearing during the process are com- 
paratively small and the basic technological parameter affecting the drying rate is the thickness of the material 
[1]. Furthermore, the forces of viscous friction are comparable to those of the intrinsic weight of the fluid. A 
detailed review of works devoted to the flow of non-Newtonian fluids in a roller gap is given in [2]. 

The objective o f  the work is to analyze the influence of the intrinsic weight and the rheologicai prop- 
erties of  the fluid on the character of its flow in the gap. 

The scheme of  flow and the system of coordinates are presented in Fig. 1. We assume that the rollers 
have sufficient length, thereby neglecting the flow of the material along the rollers (the problem is plane). The 
rotational speed of the rollers is insignificant and inertial forces are not taken into account. The physical prop- 
erties of  the fluid are independent of temperature and pressure. The magnitude of the minimum interroller gap 
is small compared to the radius of curvature of the rollers. The medium is described by the Shvedov-Bingham 
theological model. The flow direction is from top to bottom. 

The origin of  a Cartesian coordinate system is placed in the middle of the cross section of the mini- 
mum gap. The y axis is directed horizontally, while the x axis is directed vertically downward. The fluid level 
x = x0 is constant. The peripheral velocity of  the rollers is V and their radius is R. The minimum gap between 
the rollers is 2//o and current gap is 2h. The current thickness of the quasisolid core is 2h 0. 

With allowance for the assumptions made we describe the flow by a system of differential equations 
of motion, continuity, and rheological state: 

h 

- - =  bP Q = 2 ~ vx dy dp i)XXp+pg ' ~yy=0,  , (1) 
ax Oy 

t3 

The entire flow region in the interroller gap can be divided into two zones according to the character 
of the change in the pressure gradient and the velocity: in the first zone x0 < x  < Xm the pressure gradient is 
positive dp/dx > 0, while in the zone of viscoplastic flow h0 < y < h the axial velocity of the quasisolid core is 
smaller than the peripheral velocity of the roller surface i)Vx/Oy > 0 (by convention we will call it the zone of  
counterflow); in the second zone Xm < x < xl the pressure gradient is negative dp/dx < 0, while in the zone of  
viscoplastic flow (h0 < y < h) the velocity of  the quasisolid core exceeds the velocity of the rollers Ovx/dy < 0 

Volga Polytechnic Institute of Volgograd State Technical University, Volgograd, Russia. Translated 
from Inzhenerno-Fizicheskii Zhumal, Vol. 73, No. 4, pp. 787-791, July-August, 2000. Original article submit- 
ted June 8, 1999; revision submitted September 24, 1999. 

776 1062-0125/00/7304-0776525.00 02000 Kluwer Academic/Plenum Publishers 



| Q 
2 \  ~ /5  / 3  

Fig. 1. Scheme of  f low of  a viscoplastic medium in a vertical gap be-  

tween rollers: 1) rollers; 2) fluid; 3, 4) zones o f  viscoplastic shear flow; 5) 

quasisolid core. 

(the zone of  direct flow). At the interface between the zones x = Xm and h0 = h the axial velocity o f  the 

quasisolid core is equal to the peripheral velocity of  the rollers Vx = V, while the pressure curve has the bend 

dp/dx I x=-xm-O ~: dp/dxlx=x,.+O if XO ¢ O. At the outlet cross section x = xl the quasisolid core touches the roller 
surfaces ho = h and the axial velocity is uniform over the cross section vx = V. At the inlet x = x0 and at the 
outlet x = Xl the pressure is equal to atmospheric  pressure, and, without  loss of  generality, we set p = O. 

We supplement Eqs. (1) with the following boundary conditions: 

the inlet 

~,=o, I%1<~o, %=S,o+n~', 

x = x  0 , p = O ,  

the first zone (of counterflow) ;co < x < xm: 
the adhesion condition 

I%1 >x0. 

(2) 

y = h ,  vx=V, 

the boundary o f  the quasisolid core 

Y=ho,  ~ , = 0 ,  {Xxy{=X0, 

the interface of  the zones 

Vx=V o , 

(3) 

(4) 

x = x  m, vx=V, h o = h ,  (5) 

the second zone (of direct flow) x m < X <Xl:  

the adhesion condition 

y = h ,  vx=V, (6) 

the boundary o f  the quasisolid core 

Y=ho,  "~=0,  ['Cxy[=X0, Vx=Vo, (7) 

the outlet cross section 
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X=Xl, p = 0 ,  Vx= V, I%~-h)l =z0, (8) 

the symmetry condition 

Xo<X<X 1, y = O ,  ~t=O, ~xy=O. (9) 

Integrating the equation of motion in (1) with account for condition (9), we have 

The distribution of shear stresses over the gap width is linear. There is a symmetric region relative to 
the x axis where I x yl -< Xo and the behavior of  the fluid is similar to that of a solid. The current dimension of 
the quasisolid core ho is determined from Eq. (10) with account for Eqs. (4) and (7): 

SXo=ld~-pglh  o • (11) 

Here and below the sign s indicates that the expression belongs to the first (s = +1) or the second zone (s = -1).  
Considering Eqs. (10) and (11) and the equation of state from (1) simultaneously, we can write 

OVx=SXo( y -  1). 
[ho 

Integration of Eq. (12) with account for the adhesion conditions (3) and (6) gives 

(12) 

) vx=-'~- ~ -2-£0 y+h  + V. 

The velocity of the quasisolid core vo is found from conditions (4) and (7): 

(13) 

s'g 0 (h 0 - h) 2 
+ V .  

v 0 = - 2rlh ° 
(14) 

The fluid flow rate in Eqs. (1) is composed of the axial flow rate of the quasisolid core and the flow 
rate in the zones of  viscoplastic flow. With account for Eqs. (13) and (14) we have 

h 

Q =  2v0h 0 + 2 1 vxdy= 2Vh + -~-  (h - ho) (h 2 + hh o - 2h2). 
tin o 

h o 

(15) 

Now we introduce the following dimensionless variables and parameters: 

{x, x O, X m, Xl} Pg/~o Q 
/~, ~,n, ~-~m, ~,l ; S t -  ; q -  

11 V VH o 

L a -  
h0(x) 

1"1V " ~ 0  ' ~ (9) - h (x) 

 o/4o 
rlV 

(16) 

The parabolic approximation [3] is taken for the miler surface: 

h =Ho (1 +92). (17) 
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Fig. 2. Main characteristic cases of distribution of pressure over the length 
of the flow zone according to the parameters St and B: 1) 0 < St < St,; 2) 
B < St < St,; 3) St > St,. 

Expression (15) with account for Eqs. (16) and (17) takes the form 

q = 2 (1 + 4 2) + sS 34 - 43 - 2 (1 - ~2)2. ( 1 8 )  
34 

The equation for the pressure (11) in the variables (16) will be represented as 

= S t  + sS 
d~ 4 (1 + ~2)" (19) 

At the outlet cross section, ~ = L, 4 = 1, and, in conformity with Eq. (18), q = 2(1 + ~L2). Equation (19) 
yields the boundary value of  the pressure gradient dLa/d~ = St -S/(I  +E2). On the other hand, at the cross 
section ~ = ~m the quasisolid core also touches the roller surfaces (4 = 1) and, according to Eq. (14), the 
velocity of the core is v0 = V. Here, for the flow rate we have q = 2(1 +~n)  from Eq. (18). Comparing the 
expressions for the flow rate at the cross sections ~ = ~. and ~ = ~m, we obtain ~m = -~'. 

The solution of Eqs. (18) and (19) with account for the boundary condition (8) and the equality s = 
sign ( ~ -  ~,) can be represented in integral form: 

La = St (~ - X)  + S ~ sign (~ - ~,) 
~. 4 (1 + ~2) 

(20) 

= 2r cos , q) = arccos , r = 1 + S (1 + ~2)2 " 

Here the function ~(~), as the solution of the cubic equation (18), is determined for a negative value of the 
discriminant (it is always negative) [4]. 

The parameter ~ is found from condition (2): 

f sign (~ - ~.) 
S t ( ~ - ~ . ) + S j  ~ - T T + ~  d ~ = O .  

An analysis of  Eq. (19) shows that the character of the pressure distribution over the channel length is 
determined by the relation of the dimensionless combinations St and B = S(I + ~2). Here we can single out 
three cases. 
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1. A slight influence of the intrinsic-weight forces. The pressure distribution has the form of curve 1 
in Fig. 2. The condition 0 < St < B is fulfilled. The pressure gradient satisfies the conditions dLa/d~ > St + B on 

the section ~o < ~ < E and dLa/d~ < S t -  B on the section I~1 < ~,- At the cross section ~ = -~, the function 
dLa/d~ suffers a discontinuity, and the pressure curve has a bend if S ~ 0. At the outlet cross section ~ = ~, the 
pressure gradient is not equal to zero and the cavitational condition dLadd~ = 0 that holds for the viscous fluid 
is replaced by the condition of cessation of the flow dLa/d~ = St - B. The regime boundary is characterized by 
the equality St = B, which is obtained if in Eq. (19) we take ~ = 1, ~ = ~,, s = -1 ,  and dLa/d~ = 0. At the 
points ~ = +_~, dLa/d~ = 0, and on the interval I~l < 7~, dLa/d~ < 0. 

2. The regime of  a moderate influence of  the forces of  gravity. The pressure distribution has the form 
of curve 2 in Fig. 2. The Stokes number lies in the interval B < St < St,. We can find the boundary value St. 
using the conditions ~ = 0 and dLa/d~ = 0 for expressions (19) and (20): 

S t , = ~ , ,  c.= ,.cost-Tj.  >.=arccos , r , =  1 +  2 . (21) 

it is seen from Fig. 2 that on the section < the function La has two extrema located symme - 
cally relative to the cross section ~ = 0. Here the minimum in the vicinity of ~ = ~, assumes rarefaction La 

< 0. In the Newtonian case (S = 0) or without allowance for the forces of gravity (St = 0) the noted effect 
disappears. 

3. The regime of a strong influence of the forces of  gravity. The pressure gradient on the entire section 
is positive (curve 3 in Fig. 2). The relation St > St, is fulfilled. The boundary condition (2) (~ = ~-~0, La = 0) 
for the pressure at the inlet is not fulfilled. Over the entire zone of the flow the pressure is vacuum gauge. In 
practice, this regime can be implemented by providing either a lowered pressure above the fluid surface or an 
excess pressure at the outlet, i.e., at the cross section ~ = ~. The pumping effect of  the rollers, caused by the 
forces of viscous friction, is manifested. In particular, this effect forms the basis for the operation of a roller 
extruder [2] and for the process of deposition of a coating on a metal plate [5]. 

It should be noted that in all of the above-indicated regimes the character of  the velocity field is re- 
tained: at the cross sections I~1 = ~, the quasisolid core touches the roller surfaces, while in the zones of  
viscoplastic flow the inequalities ~ < ~ < -X and ~Vx/~y > 0 are fulfilled in the region of  counterflow and t~[ 
< ~ and OVx/by < 0 are fulfilled in the region of direct flow. 

Let us find the characteristic ranges of  shear rates and shear stresses necessary for determining the 
rheological constants. The lowest tangential stress and shear rate on the flow axis y = 0 are int (Xxy) = 0 and 
int (y) = 0. Correspondingly, the greatest tangential stress sup (Xxy) and shear rate sup (~/) occur at the points x 

= 0, y = +-H0 (or ~ = 0, ~ = +-h0/H0). Using the equation of  state from (1), with account for Eqs. (11), (16), 
(17), (19), and (20) we can write 

l/, sup.  
where 4. is determined according to (21). 

Now we find the integral parameters of the flow. The frictional force acting on the roller surface of  

unit length from the side of  the fluid with account for Eqs. (10), (11), and (16) is determined by the integral 

Xl I 
2f0 ~0 y=h 

where the function ~(~) is described by relations (20). 
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The magnitude of the thrust force, calculated per unit working length of the roller, with account for 
Eqs. (16) and (19) is found by integration by parts: 

T= fpdx = 2VR____.rl St + S ). ~d~. 

Xo Ho 

The technological power of the process referred to unit working length of the roller is equal to N = 
2 VF. 

N O T A T I O N  

p, pressure; Xxy, tangential stress; p, fluid density; g, free-fall acceleration; Q, volumetric flow rate of  
the fluid per unit working length of the roller; Vx, axial velocity component; y, x, Cartesian coordinates; ~, = 
bVx/Oy, rates of shear; Xo, limiting shear stress; s = sign (~t) = +1, sign of the rate of shear; rl, plastic viscosity; 
q, dimensionless flow rate; S, ll'yushin number; St, Stokes number; St., critical value of the Stokes number; 
~, Haskell dimensionless variable; 2~, dimensionless current thickness of the quasisolid core; La, Lagrange 
number; x0, xl, and Xm, coordinates of the inlet, the outlet, and the point of maximum pressure; ~ ,  ~m, and k~ 
dimensionless coordinates of the inlet, the point of the maximum, and the outlet from the gap; % r, and ]3, 
functions; F, frictional force; T, thrust force; N, consumed power. 
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